Room P3.10, Mathematics Building — Online

Marcos Jardim

Marcos Jardim, Universidade Estadual de Campinas
Walls and asymptotics for Bridgeland stability conditions on 3-folds

We consider a class of geometric Bridgeland stability conditions for 3-folds of Picard rank one, parametrized by the upper half plane. We study the geometry of numerical walls, applying our results to prove that Gieseker semistability is equivalent to a strong form of asymptotic semistability along a class of paths in the upper half plane.

Finally, we compute all of the walls and describe the Bridgeland moduli spaces for the Chern character (2,0,-1,0) on complex projective 3-space in a suitable region of the upper half plane. Joint work with Antony Maciocia.

Additional file

document preview

Jardim's slides