Planned seminars

Europe/Lisbon —

Camilla Felisetti

Camilla Felisetti, Università di Trento

Character varieties parametrise representations of the fundamental group of a curve. In general these moduli spaces are singular, therefore it is customary to slightly change the moduli problem and consider smooth analogues, called twisted character varieties. In this setting, the P=W conjecture by de Cataldo, Hausel, and Migliorini suggests a surprising connection between the topology of Hitchin systems and Hodge theory of character varieties. In a joint work with M. Mauri we establish (and in some cases formulate) analogous P=W phenomena in the singular case.

In particular we show that the P=W conjecture holds for character varieties which admit a symplectic resolution, namely in genus 1 and arbitrary rank and in genus 2 and rank 2. In the talk I will first mention basic notions of non abelian Hodge theory and introduce the P=W conjecture for smooth moduli spaces; then I will explain how to extend these phenomenas to the singular case, showing the proof our results in a specific example.

Europe/Lisbon —

Alberto Abbondandolo

Alberto Abbondandolo, Ruhr Universität Bochum

The prototypical question in metric systolic geometry is to bound the length of a shortest closed geodesic on a closed Riemannian manifold by the volume of the manifold. This question has been extensively studied for non simply connected manifolds, but in the recent years there has been some progress also for simply connected manifolds, on which closed geodesics cannot be found simply by minimizing the length. This progress involves extending systolic questions to Reeb flows, a class of dynamical systems generalising geodesic flows. On the one hand, this extension and the use of symplectic techniques provide some answers to classical questions within metric systolic geometry. On the other hand, new questions arise from the more general setting and relate seemingly distant fields such as the study of rigidity properties of symplectomorphisms and the integral geometry of convex bodies. I will give a non-technical panoramic view of some of these recent developments.

Europe/Lisbon —

Carolina Araujo

Carolina Araujo, Instituto de Matemática Pura e Aplicada

Fano manifolds, i.e., complex projective manifolds having positive first Chern class, play a key role in higher dimensional algebraic geometry. The positivity condition on the first Chern class has far reaching geometric and arithmetic implications. For instance, Fano manifolds are covered by rational curves, and families of Fano manifolds over one dimensional bases always admit holomorphic sections. In recent years, there has been great effort towards defining suitable higher analogues of the Fano condition. Higher Fano manifolds are expected to enjoy stronger versions of several of the nice properties of Fano manifolds. For instance, they should be covered by higher dimensional rational varieties, and families of higher Fano manifolds over higher dimensional bases should admit meromorphic sections (modulo Brauer obstruction). In this talk, I will discuss a possible notion of higher Fano manifolds in terms of positivity of higher Chern characters, and describe special geometric features of these manifolds.

Europe/Lisbon —

Mirko Mauri

Mirko Mauri, Max Planck (Bonn)
To be announced

Europe/Lisbon —

Antoine Song

Antoine Song, Princeton
To be announced

Europe/Lisbon —

Yael Karshon

Yael Karshon, University of Toronto

Together with Jihyeon Jessie Yang, we are resurrecting an old idea of Raoul Bott for using large torus actions to construct canonical bases for unitary representations of compact Lie groups. Our methods are complex analytic; we apply them to families of Bott-Samelson manifolds parametrized by $athbb C^n$. Our construction requires the vanishing of higher cohomology of sheaves of holomorphic sections of certain line bundles over the total spaces of such families; this vanishing is conjectural, hence the question mark in the title.

Europe/Lisbon —

Olivia Dumitrescu

Olivia Dumitrescu, University of North Carolina at Chapel Hill
To be announced