– Europe/Lisbon
Online
What does a Besse contact sphere look like?
A closed connected contact manifold is called Besse when all of its Reeb orbits are closed (the terminology comes from Arthur Besse's monograph "Manifolds all of whose geodesics are closed", which deals indeed with Besse unit tangent bundles). In recent years, a few intriguing properties of Besse contact manifolds have been established: in particular, their spectral and systolic characterizations. In this talk, I will focus on Besse contact spheres. In dimension 3, it turns out that such spheres are strictly contactomorphic to rational ellipsoids. In higher dimensions, an analogous result is unknown and seems out of reach. Nevertheless, I will show that at least those contact spheres that are convex still "resemble" a contact ellipsoid: any stratum of the stratification defined by their Reeb flow is an integral homology sphere, and the sequence of their Ekeland-Hofer capacities coincides with the full sequence of action values, each one repeated according to a suitable multiplicity. This is joint work with Marco Radeschi.