Europe/Lisbon
Online

Alexandru Oancea
Alexandru Oancea, Institut de Mathématiques de Jussieu, Sorbonne Université

Duality and coproducts in Rabinowitz-Floer homology

The goal of the talk is to explain a duality theorem between Rabinowitz-Floer homology and cohomology. These are Floer homology groups associated to the contact boundary of a Liouville domain, and the duality isomorphism is compatible with canonically defined product structures. Dual to the cohomological product is a homology coproduct which satisfies a remarkable compatibility relation with the product structure. We will also discuss the relationship to loop spaces and Chas-Sullivan/Goresky-Hingston products.