–
Room P3.10, Mathematics Building
Bruno Oliveira, University of Miami
Hyperbolicity of projective manifolds I
In this talk we will discuss several ideas and methods used in studying the Kobayshi hyperbolicity of projective manifolds. A manifold $X$ is said to be hyperbolic if there are no nonconstant holomorphic maps from the complex line to $X$. This is a subject that brings together methods of algebraic geometry, complex analysis and differential geometry.
We will discuss the key and well understood case of dimension $1$. We will have several distinct characterizations of hyperbolicity and see how that extend for projective manifolds of higher dimension. We will also discuss the related Green-Griffiths-Lang conjecture.
First session of a short course.