Europe/Lisbon — Online

Silvia Anjos

Silvia Anjos, Instituto Superior Técnico and CAMGSD
Loops in the fundamental group of $\mathrm{Symp}(M,\omega)$ which are not represented by circle actions

It was observed by J. Kędra that there are many symplectic $4$-manifolds $(M, \omega)$, where $M$ is neither rational nor ruled, that admit no circle action and $\pi_1 (\operatorname{Ham}( M))$ is nontrivial. In the case $M={\mathbb C\mathbb P}^2\#\,k\overline{\mathbb C\mathbb P}\,\!^2$, with $k \leq 4$, it follows from the work of several authors that the full rational homotopy of $\operatorname{Symp}(M,\omega)$, and in particular their fundamental group, is generated by circle actions on the manifold. In this talk we study loops in the fundamental group of $\operatorname{Symp}_h({\mathbb C\mathbb P}^2\#\,5\overline{\mathbb C\mathbb P}\,\!^2) $ of symplectomorphisms that act trivially on homology, and show that, for some particular symplectic forms, there are loops which cannot be realized by circle actions. Our work depends on Delzant classification of toric symplectic manifolds and Karshon’s classification of Hamiltonian circle actions.

This talk is based in joint work with Miguel Barata, Martin Pinsonnault and Ana Alexandra Reis.

Video

Additional file

Silvia slides.pdf